Search results for "Strongly correlated material"

showing 10 items of 36 documents

Realistic investigations of correlated electron systems with LDA + DMFT

2006

Conventional band structure calculations in the local density approximation (LDA) [1–3] are highly successful for many materials, but miss important aspects of the physics and energetics of strongly correlated electron systems, such as transition metal oxides and f-electron systems displaying, e.g., Mott insulating and heavy quasiparticle behavior. In this respect, the LDA + DMFT approach which merges LDA with a modern many-body approach, the dynamical mean-field theory (DMFT), has proved to be a breakthrough for the realistic modeling of correlated materials. Depending on the strength of the electronic correlation, a LDA + DMFT calculation yields the weakly correlated LDA results, a strong…

Condensed Matter::Quantum GasesCondensed matter physicsHubbard modelElectronic correlationChemistryMott insulatorQuantum Monte CarloCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQuasiparticleCondensed Matter::Strongly Correlated ElectronsStrongly correlated materialddc:530Metal–insulator transitionLocal-density approximation
researchProduct

Magnetic quantum criticality in quasi-one-dimensional Heisenberg antiferromagnet Cu (C4H4N2)( NO 3)2

2016

We analyze exciting recent measurements [Phys. Rev. Lett. 114 (2015) 037202] of the magnetization, differential susceptibility and specific heat on one dimensional Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2 (CuPzN) subjected to strong magnetic fields. Using the mapping between magnons (bosons) in CuPzN and fermions, we demonstrate that magnetic field tunes the insulator towards quantum critical point related to so-called fermion condensation quantum phase transition (FCQPT) at which the resulting fermion effective mass diverges kinematically. We show that the FCQPT concept permits to reveal the scaling behavior of thermodynamic characteristics, describe the experimental results quantitativ…

Condensed Matter::Quantum GasesPhysicsQuantum phase transitionCondensed matter physicsMagnonGeneral Physics and Astronomy02 engineering and technologyFermion021001 nanoscience & nanotechnology01 natural sciencesMagnetizationEffective mass (solid-state physics)Quantum mechanicsQuantum critical point0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsStrongly correlated material010306 general physics0210 nano-technologyBosonAnnalen der Physik
researchProduct

Momentum-dependent pseudogaps in the half-filled two-dimensional Hubbard model

2012

We compute unbiased spectral functions of the two-dimensional Hubbard model by extrapolating Green functions, obtained from determinantal quantum Monte Carlo simulations, to the thermodynamic and continuous time limits. Our results clearly resolve the pseudogap at weak to intermediate coupling, originating from a momentum selective opening of the charge gap. A characteristic pseudogap temperature T*, determined consistently from the spectra and from the momentum dependence of the imaginary-time Green functions, is found to match the dynamical mean-field critical temperature, below which antiferromagnetic fluctuations become dominant. Our results identify a regime where pseudogap physics is …

Condensed Matter::Quantum GasesPhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsHubbard modelCondensed Matter - SuperconductivityQuantum Monte CarloFOS: Physical sciencesCharge (physics)FermionCondensed Matter PhysicsCoupling (probability)Electronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)MomentumCondensed Matter - Strongly Correlated ElectronsQuantum Gases (cond-mat.quant-gas)Condensed Matter::Strongly Correlated ElectronsStrongly correlated materialCondensed Matter - Quantum GasesPseudogapPhysical Review B
researchProduct

Efficiency of quantum Monte Carlo impurity solvers for dynamical mean-field theory

2007

Since the inception of the dynamical mean-field theory, numerous numerical studies have relied on the Hirsch-Fye quantum Monte Carlo (HF-QMC) method for solving the associated impurity problem. Recently developed continuous-time algorithms (CT-QMC) avoid the Trotter discretization error and allow for faster configuration updates, which makes them candidates for replacing HF-QMC. We demonstrate, however, that a state-of-the-art implementation of HF-QMC (with extrapolation of discretization delta_tau -> 0) is competitive with CT-QMC. A quantitative analysis of Trotter errors in HF-QMC estimates and of appropriate delta_tau values is included.

Condensed Matter::Quantum GasesPhysicsStrongly Correlated Electrons (cond-mat.str-el)DiscretizationQuantum Monte CarloExtrapolationFOS: Physical sciencesCondensed Matter PhysicsDiscretization errorElectronic Optical and Magnetic MaterialsCondensed Matter - Strongly Correlated ElectronsDynamical mean field theoryImpurityDynamic Monte Carlo methodCondensed Matter::Strongly Correlated ElectronsStrongly correlated materialStatistical physics
researchProduct

Quantum critical point in a periodic Anderson model

2000

We investigate the symmetric Periodic Anderson Model (PAM) on a three-dimensional cubic lattice with nearest-neighbor hopping and hybridization matrix elements. Using Gutzwiller's variational method and the Hubbard-III approximation (which corresponds to the exact solution of an appropriate Falicov-Kimball model in infinite dimensions) we demonstrate the existence of a quantum critical point at zero temperature. Below a critical value $V_c$ of the hybridization (or above a critical interaction $U_c$) the system is an {\em insulator} in Gutzwiller's and a {\em semi-metal} in Hubbard's approach, whereas above $V_c$ (below $U_c$) it behaves like a metal in both approximations. These prediction…

Condensed Matter::Quantum GasesPhysicsStrongly Correlated Electrons (cond-mat.str-el)Quantum Monte CarloFOS: Physical sciencesCritical value01 natural sciences010305 fluids & plasmasCondensed Matter - Strongly Correlated ElectronsExact solutions in general relativityVariational methodQuantum critical pointQuantum mechanics0103 physical sciencesDensity of statesCondensed Matter::Strongly Correlated ElectronsStrongly correlated material010306 general physicsAnderson impurity modelPhysical Review B
researchProduct

Quantum critical point in high-temperature superconductors

2009

Recently, in high-T_c superconductors (HTSC), exciting measurements have been performed revealing their physics in superconducting and pseudogap states and in normal one induced by the application of magnetic field, when the transition from non-Fermi liquid to Landau Fermi liquid behavior occurs. We employ a theory, based on fermion condensation quantum phase transition which is able to explain facts obtained in the measurements. We also show, that in spite of very different microscopic nature of HTSC, heavy-fermion metals and 2D 3He, the physical properties of these three classes of substances are similar to each other.

Condensed Matter::Quantum GasesQuantum phase transitionSuperconductivityPhysicsHigh-temperature superconductivityStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsCondensed Matter - SuperconductivityFOS: Physical sciencesGeneral Physics and AstronomyFermionElectronic structurelaw.inventionSuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated ElectronslawCondensed Matter::SuperconductivityQuantum critical pointStrongly correlated materialPseudogapPhysics Letters A
researchProduct

Observing the anisotropic optical response of the heavy-fermion compound UNi2 Al3

2010

The optical conductivity of heavy fermions can reveal fundamental properties of the charge carrier dynamics in these strongly correlated electron systems. Here we extend the conventional techniques of infrared optics on heavy fermions by measuring the transmission and phase shift of THz radiation that passes through a thin film of UNi 2 Al 3 , a material with hexagonal crystal structure. We deduce the optical conductivity in a previously not accessible frequency range, and furthermore we resolve the anisotropy of the optical response (parallel and perpendicular to the hexagonal planes). At frequencies around 7 cm -1 , we find a strongly temperature-dependent and anisotropic optical conducti…

Condensed matter physicsInfraredChemistryPhysics::OpticsCharge carrierStrongly correlated materialFermionThin filmCondensed Matter PhysicsAnisotropyOptical conductivityDrude modelElectronic Optical and Magnetic Materialsphysica status solidi (b)
researchProduct

Phase diagram of the quarter-filled extended Hubbard model on a two-leg ladder

2000

We investigate the ground-state phase diagram of the quarter-filled Hubbard ladder with nearest-neighbor Coulomb repulsion V using the Density Matrix Renormalization Group technique. The ground-state is homogeneous at small V, a ``checkerboard'' charge--ordered insulator at large V and not too small on-site Coulomb repulsion U, and is phase-separated for moderate or large V and small U. The zero-temperature transition between the homogeneous and the charge-ordered phase is found to be second order. In both the homogeneous and the charge-ordered phases the existence of a spin gap mainly depends on the ratio of interchain to intrachain hopping. In the second part of the paper, we construct an…

Density matrixPhysicsStrongly Correlated Electrons (cond-mat.str-el)Hubbard modelCondensed matter physicsFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSpin chainsymbols.namesakeCondensed Matter - Strongly Correlated ElectronsHomogeneous0103 physical sciencessymbolsStrongly correlated materialCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyGround stateHamiltonian (quantum mechanics)Phase diagram
researchProduct

Stripe formation in doped Hubbard ladders

2004

We investigate the formation of stripes in $7\chunks \times 6$ Hubbard ladders with $4\chunks$ holes doped away from half filling using the density-matrix renormalization group (DMRG) method. A parallelized code allows us to keep enough density-matrix eigenstates (up to $m=8000$) and to study sufficiently large systems (with up to $7\chunks = 21$ rungs) to extrapolate the stripe amplitude to the limits of vanishing DMRG truncation error and infinitely long ladders. Our work gives strong evidence that stripes exist in the ground state for strong coupling ($U=12t$) but that the structures found in the hole density at weaker coupling ($U=3t$) are an artifact of the DMRG approach.

Density matrixPhysicsTruncation errorHubbard modelCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Density matrix renormalization groupFOS: Physical sciencesRenormalization groupCondensed Matter PhysicsCoupling (probability)Electronic Optical and Magnetic MaterialsCondensed Matter - Strongly Correlated ElectronsQuantum mechanicsStrongly correlated materialCondensed Matter::Strongly Correlated ElectronsGround state
researchProduct

GAUSSIAN EFFECTIVE POTENTIAL AND ANTIFERROMAGNETISM IN THE HUBBARD MODEL

2012

The Gaussian Effective Potential (GEP) is shown to be a useful variational tool for the study of the magnetic properties of strongly correlated electronic systems. The GEP is derived for a single band Hubbard model on a two-dimensional bi-partite square lattice in the strong coupling regime. At half-filling the antiferromagnetic order parameter emerges as the minimum of the effective potential with an accuracy which improves over RPA calculations and is very close to that achieved by Monte Carlo simulations. Extensions to other magnetic systems are discussed.

Gaussian effective potentialPhysicsHubbard modelStrongly Correlated Electrons (cond-mat.str-el)Hubbard modelGaussianMonte Carlo methodFOS: Physical sciencesOrder (ring theory)Statistical and Nonlinear PhysicsCondensed Matter PhysicsSquare latticeGaussian effective potential; antiferromagnetism; Hubbard modelCondensed Matter - Strongly Correlated Electronssymbols.namesakeantiferromagnetismsymbolsAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsStrongly correlated materialStatistical physicsElectronic systemsModern Physics Letters B
researchProduct